Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Чувашский государственный педагогический университет им. И.Я. Яковлева»

УТВЕРЖДАЮ

Ректор

Б. Г. Миронов

2012 г.

ПРОГРАММА

кандидатского экзамена по специальности

01.01.04 «Геометрия и топология»

по физико-математическим наукам

Введение

В основу программы кандидатского экзамена по специальности 01.01.04 – геометрия и топология положены следующие дисциплины: геометрия (в том числе дискретная), общая, алгебраическая и дифференциальная топологи по разделам: геометрия многообразий и различных геометрических структур; дискретная и комбинаторная геометрия; дифференциальная геометрия и ее приложения; интегральная геометрия; симплектическая, контактная и пуассонова геометрия конечномерных и бесконечномерных пространств; общая топология; алгебраическая топология; топология гладких многообразий; маломерная топология, включая теорию узлов и зацеплений; топология особенностей; теория пространств отображений и пространств модулей различных геометрических структур; топология и геометрия групп и однородных пространств, конформнодифференциальная геометрия, инвариантные методы дифференциальной геометрии.

Программа составлена на кафедре геометрии Чувашского государственного педагогического университета доктором физико-математических наук, профессором Столяровым А.В. на основе программы, разработанной экспертным советом Высшей аттестационной комиссии по математике и механике при участии Математического института им. В.А. Стеклова РАН и Московского государственного университета им. М.В. Ломоносова.

1. Общая топология

Метрическое пространство. Полнота. Теорема Бэра о категории.

Топологическое пространство. Непрерывность. Гомеоморфизм. Аксиомы отделимости. Связность и линейная связность. Фактор-топология. Топологии в функциональных пространствах (отрыто-замкнутая топология в пространстве непрерывных отображений и С^k-топология в пространстве гладких отображений).

Лемма Урысона. Теорема о продолжении непрерывных функций.

Компактность и способы компактификации пространств. Теорема Тихонова о компактности произведения. Расширения Чеха-Стоуна. Разбиение единицы и его приложения. Теорема Вейерштрасса об аппроксимации полиномами непрерывной функции на компакте в евклидовом пространстве.

Лебегово определение размерности. Нерв покрытия и аппроксимация компакта полиэдрами.

Индуктивное определение топологической размерности. Теорема Урысона об эквивалентности.

Хаусдорфова размерность. Ее связь с топологической. Фракталы: канторово множество, ковер Серпинского, их хаусдорфова размерность.

2. Алгебраическая топология

Гомотопическая эквивалентность. Гомотопические классы отображений. Фундаментальная группа топологического пространства. Группа кос как фундаментальная группа конфигурационного пространства системы точек на плоскости. Гомотопические группы пространств и их гомотопическая инвариантность. Точная гомотопическая последовательность пары. Вычисление k-мерных гомотопических групп n-мерной сферы для k меньших или равных n.

Пространства Эйленберга-Маклейна. Н-пространства и группа гомотопических классов отображений в Н-пространство. Коммутативность фундаментальной группы Н-пространства.

Группы сингулярных гомологий и когомологий. Симплициальные и клеточные пространства. Симплициальные и клеточные гомологии и когомологии, их связь с сингулярными. Эйлерова характеристика. Гомотопическая инвариантность групп гомологий. Умножение в когомологиях. Точные гомологическая и когомологическая последовательности пары. Гомологии и когомологии с коэффициентами. Оператор Бокштейна. Связь фундаментальной группы и группы одномерных гомологий. Двойственность Пуанкаре для многообразий.

Теории гомологий и когомологий. Аксиомы теории гомологий и когомологий. Теорема единственности для гомологий и когомологий. Группы когомологий как группы классов отображений в пространства Эйленберга-Маклейна.

Кольцо когомологий Н-пространства как алгебра Хопфа. Классификация градуированных алгебр Хопфа над полем рациональных чисел.

Гомологии и кольца когомологий проективных пространств. Клетки Шуберта и гомологии многообразий Грассмана.

Накрытия. Лемма о накрывающей гомотопии. Универсальное накрытие. Накрытие и фундаментальная группа. Аксиома о накрывающей гомотопии и расслоение в смысле Серра. Пространство путей и петель, лемма о накрывающей гомотопии для расслоения путей.

Локально тривиальные расслоения. Сечения. Точная гомотопическая последовательность расслоения. Основные понятия теории препятствий (препятствующий коцикл и первое препятствие к сечению расслоения).

Действие монодромии в гомологиях расслоения. Формула Пикара-Лефшеца.

Векторные расслоения. Прямая сумма и тензорное произведение векторных расслоений. Многообразие Грассмана как база универсального векторного расслоения. Пространства Тома и изоморфизм Тома в гомологиях и когомологиях.

Характеристические классы векторных расслоений.

Понятие о группе K(X) и периодичности Ботта. Группа K(X) как когомологический функтор.

3. Топология гладких многообразий

Гладкие многообразия. Криволинейные координаты. Гладкие отображения и дифференциал. Диффеоморфизм. Подмногообразия. Ориентация. Касательные векторы и касательные расслоения. Примеры гладких многообразий. Теория Морса: функции Морса, индуцированное клеточное разбиение, неравенства Морса. Перестройки в многообразиях. Конструкция Понтрягина-Тома. Понятие бордизма многообразий.

Вложения и погружения. Теорема Уитни о вложении и погружении в евклидовы пространства. Субмерсии и гладкие расслоения. Особые и регулярные точки гладких отображений. Лемма Сарда (формулировка). Степень отображения, ее гомотопическая инвариантность. Применения степени отображения. Степень отображения и интеграл. Теорема Гаусса-Бонне. Гомотопическая классификация отображений п-мерной сферы в себя. Расслоение Хопфа и классификация отображений трехмерной сферы в двумерную. Инвариант Хопфа.

Индекс особой точки векторного поля и теорема Эйлера-Пуанкаре.

Двойственность Александера. Индексы пересечения и зацепления.

Исчисление струй. Топологии Уитни в пространствах гладких отображений. Теоремы трансверсальности. Теорема трансверсальности Тома и ее следствия: лемма Морса, слабая теорема Уитни. Локальная классификация устойчивых отображений плоскости в плоскость и в трехмерное пространство. Число Милнора изолированной особенности функции.

4. Топология малых размерностей

Классификация двумерных замкнутых поверхностей. Группы гомологий и фундаментальные группы двумерных поверхностей. Узлы и зацепления. Движения Райдемайстера. Полином Александера узла. Примеры трехмерных многообразий. Склейка полноторий по диффеоморфизму границы. Диаграмма Хегора трехмерных многообразий.

5. Дифференциальная геометрия

Теория кривых и поверхностей в трехмерном пространстве: натуральный параметр, кривизна и кручение кривой, формулы Френе, первая и вторая квадратичные формы поверхности, гауссова и средняя кривизны, главные направления и главные кривизны, теорема Менье и формула Эйлера. Деривационные формулы.

Риманова метрика и римановы многообразия. Подмногообразия в евклидовом пространстве и индуцированная метрика. Геометрия Лобачевского. Проективная геометрия.

Тензоры и тензорные поля на гладких многообразиях. Алгебраические операции над тензорами. Симметрические и кососимметрические тензоры. Производная Ли.

Внешние дифференциальные формы, внешнее дифференцирование. Интегрирование внешних дифференциальных форм. Формула Стокса. Точные и замкнутые формы. Когомологии де Рама. Теорема де Рама (без доказательства). Оператор Лапласа и гармонические формы. Двойственность Пуанкаре.

Ковариантное дифференцирование. Символы Кристоффеля. Тензор кручения. Римановы симметрические связности. Тензор кривизны Римана и критерий локальной евклидовости римановой метрики, тензор Риччи и скалярная кривизна. Теорема Гаусса о связи между скалярной и гауссовой кривизнами.

Параллельный перенос и геодезические. Формула Эйлера-Лагранжа. Примеры: геодезические на плоскости, сфере, плоскости Лобачевского, поверхности вращения. Сопряженные точки и индекс геодезической.

Связности и кривизна в расслоениях. Тождество Бьянки.

Характеристические классы и характеристические числа. Конструкция Чженя-Вейля характеристических классов. Характеристические числа.

Теорема Стокса и инвариантность характеристических чисел относительно бордизма.

Проективная двойственность и преобразования Лежандра.

6. Геометрические структуры на гладких многообразиях

Структуры на гладких многообразиях: риманова, почти комплексная, эрмитова, комплексная, кэлерова. Понятие о препятствиях к существованию структур.

Симплектическая структура. Примеры симплектических многообразий. Теорема Дарбу. Существование почти комплексной структуры на симплектическом многообразии. Скобка Пуассона. Примеры пуассоновых многообразий. Гамильтоновы векторные поля и гамильтоновы системы. Первые интегралы гамильтоновых систем.

Контактные структуры и контактные многообразия. Примеры. Слоения и распределения. Теорема Фробениуса.

7. Геометрия групп Ли и однородных пространств

Группы Ли и алгебры Ли, присоединенное представление. Алгебра Ли векторных полей. Действия групп Ли на гладких многообразиях. Односвязные и неодносвязные группы Ли. Однородные пространства. Примеры: классические матричные группы Ли, многообразия Грассмана и Штифеля, лагранжевы грассманианы U(n)/O(n) и U(n)/SO(n). Компактные группы Ли и биинвариантная метрика.

Кольцо когомологий компактной группы Ли. Группы токов и группы диффеоморфизмов как примеры бесконечномерных групп Ли.

8. Дискретная и комбинаторная геометрия

Выпуклые множества и разбиения пространства. Разбиения Вороного и Делоне. Кристаллы как правильные точечные системы. Кристаллографическая группа в евклидовом пространстве. Классификация кристаллографических групп на плоскости.

Правильные многогранники. Теорема Коши о единственности выпуклого многогранника с данным набором граней.

9. Инвариантные дифференциально-геометрические методы

Инвариантные формы группы Ли; структурные уравнения Маурера-Картана. Условие, при котором линейно независимая система форм Пфаффа является системой базисных инвариантных форм локальной группы Ли. Подгруппы группы Ли. Представления групп Ли; репер пространства представления.

Геометрические объекты; линейные геометрические объекты. Теория охватов. Формы главной и присоединенной расслоенной структуры. Правильно продолжаемые системы дифференциальных уравнений. Поле геометрического объекта. Последовательность главных расслоенных многообразий над гладким многообразием M_n . Погруженное многообразие в однородном пространстве. Канонизация подвижного репера. Лемма Н.М. Остиану. Поля основного и полного фундаментальных геометрических объектов погруженного многообразия. Определяющее связность отображение. Теорема Картана-Лаптева. Определение связности заданием поля объекта связности.

Подвижной репер проективного пространства. Простейшие геометрические объекты проективного пространства (точка, гиперплоскость, гиперквадрика). Фундаментальные объекты второго и третьего порядка на гиперповерхности проективного пространства. Основные тензоры 3-го порядка на гиперповерхности (тензор Дарбу и т.д.). Первая и вторая пары нормальных квазитензоров на гиперповерхности. Полнота фундаментального объекта пятого порядка гиперповерхности. Пучок соприкасающихся гиперквадрик на гиперповерхности. Вырождение гиперповерхности в гиперквадрику. Канонический пучок проективных нормалей гиперповерхности.

10. Конформно-дифференциальная геометрия

Конформное пространство: полисферические координаты, отображение Дарбу и гиперквадрика Дарбу, модель конформной плоскости; скалярное произведение гиперсфер конформного пространства. Подвижной полуизотропный репер и структурные уравнения конформного пространства. Угловая метрика конформного пространства. Собственно конформное и псевдоконформное пространства. Подгруппы группы конформных преобразований. Пространство конформной связности. Дифференциальные уравнения взаимно ортогональных распределений конформного пространства. Внутренние оснащения распределений и поверхностей конформного пространства. Внутренние оснащения распределений и поверхностей конформного пространства. Аффинные связности, индуцируемые полным оснащением взаимно ортогональных распределений. Аффинные связности на вполне оснащенном распределении гиперплоскостных элементов в конформном пространстве. Нормальные связности на вполне оснащенном распределении гиперплоскостных элементов в конформном пространстве. Аффинные связности на нормально оснащенной поверхности конформного пространства. Пространство конформной связности, индуцируемое касательным оснащением распределения.

Основная рекомендуемая литература

- 1. Дубровин Б.А. Современная геометрия. Части 1 (Геометрия поверхностей, групп преобразований и полей), 2 (Геометрия и топология многообразий) и 3 (Методы теории гомологий) / Б.А. Дубровин, С.П. Новиков, А.Т. Фоменко. М.: Наука, 1986, 1984. (Части 1 и 2 переизданы в М.: Эдиториал УРСС, 1998.)
- 2. Новиков С.П. Современные геометрические структуры и поля / С.П. Новиков, И.А. Тайманов. М. : МЦНМО, 2003.
- 3. Фоменко А.Т. Курс гомотопической топологии / А.Т. Фоменко, Д.Б. Фукс. М.: Наука, 1989.
- 4. Новиков С.П. Топология / С.П. Новиков. Москва-Ижевск : Ин-т компьютерных исследований, 2002.
- 5. Коксетер Г.С. Введение в геометрию / Г.С. Коксетер. М., Наука, 1966.
- 6. Столяров А.В. Теоретико-групповой метод дифференциально-геометрических исследований и его приложения / А. В. Столяров. Чебоксары : Чуваш. гос. пед. ун-т, 2002. 204 с.
- 7. Лаптев Г.Ф. Дифференциальная геометрия погруженных многообразий. Теоретико-групповой метод дифференциально-геометрических исследований / Г.Ф. Лаптев. Труды Моск. матем. общества, 1953. Т. 2. С. 275-384.
- 8. Столяров А.В. Конформно-дифференциальная геометрия оснащенных многообразий / А. В. Столяров, Т. Н. Глухова. Чебоксары : Чуваш. гос. пед. ун-т, 2007.-180 с.
- 9. Борисович Ю.Г. Введение в топологию / Ю. Г. Борисович и соавт. М. : «Высшая школа», 1980. 296 с.

- 10. Евтушик Л.Е. Дифференциально-геометрические структуры на многообразиях / Л. Е. Евтушик и соавт. // Проблемы геометрии. Т. 9. (Итоги науки и техн. ВИНИТИ АН СССР). М., 1979. 246 с.
- 11. Норден А.П. Пространства аффинной связности / А.П. Норден. М. : «Наука», 1976. 423 с.
- 12. Рашевский П.К. Риманова геометрия и тензорный анализ / П.К. Рашевский. М. : «Наука», 1967. 664 с.
- 13. Гуревич Г. Б. Группы и алгебры Ли / Г. Б. Гуревич. М. : МГПИ им. В.И. Ленина, 1965. 130 с.
- 14. Мищенко А.С. Курс дифференциальной геометрии и топологии / А.С. Мищенко, А.Т. Фоменко. М.: Изд-во "Факториал Пресс", 2000.
- 15. Тайманов И.А. Лекции по дифференциальной геометрии / И.А. Тайманов. Москва-Ижевск: Ин-т компьютерных исследований, 2002.
- 16. Кобаяси Ш. Основы дифференциальной геометрии. Том 1,2 / Ш. Кобаяси, К. Номидзу. М. : Наука, 1981.
- 17. Федорчук В.В. Общая топология. Основные конструкции / В.В. Федорчук, В.В. Филиппов. М. : Изд-во МГУ, 1988.

Дополнительная литература

- 1. Фиников С. П. Метод внешних форм в дифференциальной геометрии / С. П. Фиников. М. ; Л. : ГИТТЛ, 1948. 432 с.
- 2. Столяров А. В. Метод внешних форм Картана и группы Ли / А. В. Столяров. Чебоксары, 1997. 112 с.
- 3. Столяров А. В. Системы уравнений Пфаффа в инволюции. Классические пространства / А. В. Столяров. Чебоксары, 1998. 132 с.
- 4. Арнольд В.И. Математические методы классической механики / В.И. Арнольд. М.: Наука, 1989.
- 5. Арнольд В.И. Особенности дифференцируемых отображений. Том 1, 2 / В.И. Арнольд, А.Н. Варченко, С.М. Гусейн-Заде. М.: Наука, 1982, 1984.
- 6. Александров П.С. Введение в теорию размерности / П.С. Александров, Б.А. Пасынков. М. : Наука, 1973.
- 7. Милнор Дж. Характеристические классы / Дж. Милнор, Дж. Сташеф. М. : Мир, 1979.

Программа утверждена на заседании кафедры геометрии 18 июня 2012 г. (протокол N 10).

Зав. кафедрой геометрии, канд. ф.-м. н., доцент

Фисунов П. А.