Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Чувашский государственный педагогический университет им. И.Я. Яковлева»

УТВЕРЖДАЮ Ректор Б. Г. Миронов 2012 г.

ПРОГРАММА

кандидатского экзамена по специальности 02.00.03 «Органическая химия»

по химическим наукам

ВВЕДЕНИЕ

Настоящая программа базируется на основополагающих разделах органической химии, включая теоретические проблемы строения и реакционной способности органических соединений, методы синтеза основных классов органических веществ, аналитические методы контроля и идентификации химических соединений, информационно-поисковые системы в органической химии, технику экспериментальных исследований и экологические аспекты органического синтеза.

Программа составлена доктором химических наук, профессором Митрасовым Ю.Н. на основе программы-минимума, разработанной экспертным советом Высшей аттестационной комиссии Министерства образования Российской Федерации по химии (по органической химии) при участии Московского государственного университета им. М.В. Ломоносова, Санкт-Петербургского государственного технологического института (технического университета) и Санкт-Петербургского государственного университета.

І. ЗАКОНОМЕРНОСТИ СТРОЕНИЯ И РЕАКЦИОННОГО ПОВЕДЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

- 1. Химическая связь и строение органических соединений
- 1.1. Современные представления о природе химической связи.

Электронные представления о природе связей. Типы связей в органической химии. Гибридизация атомов углерода и азота. Электронные эффекты. Электроотрицательность атомов и групп.

Основные положения квантовой химии. Атомные и молекулярные орбитали. Приближение МО-ЛКАО. Метод МО Хюккеля и более строгие квантово-химические методы расчета. Понятие о полуэмпирических методах, основанных на приближении Хартри—Фока (MNDO, AM1, PM3 и др.). Методы ab initio. Метод функционала плотности (DFT). Компромиссные подходы (локализованные связи, гибридизация, частичный учет делокализации электронов на примере s -p -приближения).

Теория возмущений МО. Возмущения первого и второго порядков. Индексы реакционной способности. Метод граничных орбиталей. Зарядовый и орбитальный контроль органических реакций.

Понятие о резонансе (сопряжении) в классической и квантовой химии. Сопряжение в методе МО Хюккеля. Концепция ароматичности. Правило Хюккеля. Мезоионные соединения. Антиароматичность.

1.2. Стереохимия. Пространственное строение органических молекул. Пространственное взаимодействие несвязанных атомов и групп, ван-дер-ваальсовы радиусы.

Понятие о конформации молекулы. Вращение вокруг связей: величины и симметрия потенциальных барьеров. Факторы, определяющие энергию конформеров. Влияние эффектов сопряжения на стабильность конформеров. Номенклатура конформеров. Угловое напряжение и другие типы напряжения в циклических системах. Средние циклы и трансаннулярные взаимодействия. Инверсия циклов и азотсодержащих соединений.

Связь конформации и реакционной способности. Принцип Кертина—Гаммета. Стерический и стереоэлектронный контроль реакций. Стереоселективность и стереоспецифичность.

Пространственное строение этиленовых и диеновых систем. Номенклатура геометрических изомеров. Конформация диенов и триенов. Атропоизомерия.

Энантиомерия. Асимметрия и хиральность. Эквивалентные, энантиотопные и диастереотопные группы; их проявление в химическом поведении молекул в хиральных и ахиральных средах и спектрах ЯМР. Номенклатура оптических антиподов. Неуглеродные атомы как центры хиральности.

Способы получения и разделения энантиомеров. Оптическая чистота и методы ее определения. Определение абсолютной и относительной конфигурации. Понятие о дисперсии оптического вращения и круговом дихроизме.

2. Общие принципы реакционной способности

2.1. Классификация реакций по типу образования и разрыва связей в лимитирующей стадии, по типу реагента и по соотношению числа молекул реагентов и продуктов.

Теория переходного состояния. Гиперповерхность потенциальной энергии, координата и энергетический профиль реакции. Термодинамические параметры активации. Кинетические уравнения основных типов реакций. Методы экспериментального изучения кинетики и механизмов реакций. Метод стационарного состояния (принцип Боденштейна). Постулат Хэммонда.

Эмпирический (экстратермодинамический) подход к реакционной способности. Корреляционные уравнения, принцип линейности свободных энергий Гиббса. Уравнения Гаммета и Тафта. Связь параметров корреляционных уравнений с механизмом реакций.

Принцип ЖМКО; его обоснование на основе теории возмущений МО.

- 2.2. Количественная теория кислот и оснований. Кислоты Бренстеда и Льюиса. Кислотно-основное равновесие. Понятие рН. Кинетическая и термодинамическая кислотность. Уравнение Бренстеда. Общий и специфический кислотно-основный катализ. Суперкислоты. Функции кислотности. Постулат Гаммета.
- 2.3. Влияние среды на скорости и равновесие органических реакций. Специфическая и неспецифическая (универсальная) сольвация. Клеточный эффект. Водородная связь. Классификация и шкалы параметров растворителей. Влияние сольвации на скорость и равновесие органических реакций. Уравнения Уинстейна и Грюнвальда, Коппеля-Пальма. Кислотность и основность в газовой фазе.

Ассоциация ионов. Типы ионных пар и доказательства их существования. Влияние ассоциации ионов на их реакционную способность. Уравнение Акри.

Межфазный катализ. Краун-эфиры, криптанды, поданды, катализаторы межфазного переноса. Понятие о супрамолекулярной химии.

2.4. Основные типы интермедиатов. Карбениевые ионы (карбокатионы). Генерация карбокатионов в растворах и в газовой фазе. Влияние структурных и сольватационных факторов на стабильность карбокатионов. Строение карбокатионов. Понятие о неклассических ионах. Основные типы реакций карбокатионов и области их синтетического использования. Скелетные перегруппировки и гидридные сдвиги в карбокатионах.

Карбанионы и СН-кислоты. Влияние структурных и эффектов среды на стабилизацию карбанионов. Основные реакции карбанионов, анионные перегруппировки. Амбидентные и полидентные анионы. Карбены. Электронная структура, синглетное и

триплетное состояние карбенов. Методы генерации карбенов и использование их в органическом синтезе. Нитрены, их генерация, строение и свойства.

Свободные радикалы и ион-радикалы. Методы генерирования радикалов. Электронное строение и факторы стабилизации свободных радикалов. Типы стабильных свободных радикалов. Основы методов ЭПР и ХПЯ. Катион- и анион-радикалы. Методы генерирования и свойства. Основные реакции ион-радикалов. Комплексы с переносом заряда.

3. Основные типы органических реакций и их механизмы

- 3.1. Нуклеофильное замещение в алифатическом ряду. Механизмы SN1 и SN2, смешанный ионно-парный механизм. Влияние структуры субстрата и полярности растворителя на скорости и механизм реакции. Анхимерное содействие и синартетическое ускорение, участие соседних групп, перегруппировки в ходе нуклеофильного замещения. Корреляционные уравнения Суэйна—Скотта и Эдвардса.
- 3.2. Нуклеофильное замещение при кратной углерод-углеродной связи и в ароматическом ядре. Типичные механизмы нуклеофильного замещения у sp2-гибридного атома углерода. Винильный катион. Моно- и бимолекулярные процессы нуклеофильного замещения в ароматическом ряду. Катализ переходными металлами. Нуклеофильное замещение в нитропроизводных бензола. Нуклеофильное замещение водорода (викариозное замещение). Комплексы Мейзенхеймера. Нуклеофильное замещение в ароматических гетероциклах. Кине-замещение.
- 3.3. Электрофильное замещение у атома углерода. Механизмы замещения SE1, SE2, SEi. Нуклеофильный катализ электрофильного замещения. Влияние структуры субстрата и эффектов среды на скорость и направление реакций. Замещение у олефинового атома углерода и в ароматическом кольце. Генерирование электрофильных реагентов. Правила ориентации и их молекулярно-орбитальная интерпретация. Электрофильное замещение других групп, кроме водорода. Ипсо-замещение. Кинетические изотопные эффекты.
- 3.4. Реакции элиминирования (отщепления). Механизмы гетеролитического элиминирования E1 и E2. Стереоэлектронные требования и стереоспецифичность при E2-элиминировании. Термическое син-элиминирование.
- 3.5. Присоединение по кратным углерод-углеродным связям. Электрофильное присоединение. Сильные и слабые электрофилы, механизм и стереохимия присоединения, регио- и стереоселективность реакций. Присоединение к сопряженным системам. Катионная полимеризация олефинов. Нуклеофильное присоединение по кратным связям С= С. Механизм процесса. Влияние структуры нуклеофила и субстрата и эффектов среды на скорость и направление реакции. Реакция Михаэля. Анионная полимеризация олефинов.
- 3.6. Нуклеофильное присоединение к карбонильной группе: присоединение оснований, включая карбанионы, металлорганических соединений. Реакция Анри. Кислотный и основной катализ присоединения. Енолизация альдегидов и кетонов. Механизм этерификации кислот и получение ацеталей. Конденсации карбонильных соединений, карбоновых кислот и их производных. Нуклеофильное присоединение к альд- и кетиминам и карбоний- иммониевым ионам (реакция Манниха).
- 3.7. Перегруппировки в карбокатионных интермедиатах. Классификация перегруппировок: пинаколиновая и ретропинаколиновая, перегруппировка Демьянова. Перегруппировка Вагнера—Мейервейна. Перегруппировки с миграцией к атому азота (Гофмана, Курциуса, Бекмана). Реакция Байера—Виллигера.

- 3.8. Радикальные и ион-радикальные реакции присоединения, замещения и элиминирования. Цепные радикальные реакции. Полимеризация, теломеризация, реакции автоокисления. Ингибиторы, инициаторы и промоторы цепных реакций. Редокс-реакции. Электросинтез органических соединений.
- 3.9. Молекулярные реакции (цис-транс-изомеризация, распад молекул, размыкание циклов). Коарктатные реакции.
- 3.10. Согласованные реакции. Концепция сохранения орбитальной симметрии и правила Вудворда—Гофмана. Электроциклические реакции, сигматропные перегруппировки. Перициклические реакции (2+2) и (2+4)-циклоприсоединения. 1,3-диполярное циклоприсоединение.
- 3.11. Двойственная реакционная способность и таутомерия органических соединений. Прототропные и сигматропные перегруппировки. Правило Корнблюма. Кетоенольное равновесие. Нитросоединения и нитроновые кислоты, нитрозосоединения и оксимы. Металлотропия.
- 3.12. Основы фотохимии органических соединений. Синглетные и триплетные состояния, флуоресценция и фосфоресценция, интеркомбинационная конверсия. Основные типы фотохимических реакций. Явление фотохромизма.
 - 4. Принципы современного органического синтеза и установления строения органических соединений
- 4.1. Выбор оптимального пути синтеза. Принцип ретросинтетического анализа. Линейные и конвергентные схемы синтеза. Синтоны и синтетические эквиваленты. Защита функциональных групп. Методы введения и удаления защитных групп.
 - 4.2. Основные пути построения углеродного скелета.
- 4.3. Методы введения важнейших функциональных групп и пути перехода от одних функций к другим.
- 4.4. Элементоорганические соединения (производные фосфора, бора, кремния, меди, лития, магния, олова) в органическом синтезе. Металлокомплексный катализ.
- 4.5. Использование химических и физико-химических методов для установления структуры органических соединений. Спектроскопия ЯМР, ЭПР, колебательная и электронная спектроскопия, масс- и хромато-масс-спектрометрия. Газожидкостная и жидкостная хроматография, ионообменная и гельпроникающая хроматография, электрофорез. Рентгеноструктурный анализ и электронография. Рефрактометрия.
- 4.6. Особенности оборудования и методики проведения реакций в гетерофазных и гетерогенных системах. Современные методы обработки реакционных масс, очистки и выделения продуктов. Проведение реакций на твердых носителях. Принципы комбинаторной химии.
- 4.7. Техника безопасности и экологические проблемы органического синтеза. «Зеленая химия». Термохимия органических реакций. Тепловой взрыв.

5. Использование ЭВМ в органической химии и информатика

- 5.1. Основные представления о применении неэмпирических и полуэмпирических методов квантово-химических вычислений и расчетов методами молекулярной механики для определения электронного и пространственного строения, конформационного состава, теплот образования, энергий напряжения и активации химических реакций, колебательных и электронных спектров, реакционной способности органических соединений.
- 5.2. Традиционные средства химической информации и методы их использования. Автоматизированные информационно-поисковые системы.

Понятие об эмпирических корреляциях структура-свойство (QSAR, QSPR). Спектроструктурные корреляции. Машинное планирование и поиск путей синтеза органических соединений. Метод расчленения, выбор трансформов, ретронов и синтонов, способов связывания синтонов друг с другом.

II. СИНТЕТИЧЕСКИЕ МЕТОДЫ В ОРГАНИЧЕСКОЙ ХИМИИ И ХИМИЧЕСКИЕ СВОЙСТВА СОЕДИНЕНИЙ

1. Алканы

- 1.1. Методы синтеза: гидрирование непредельных углеводородов, синтез через литийдиалкилкупраты, электролиз солей карбоновых кислот (Кольбе), восстановление карбонильных соединений.
- 1.2. Реакции алканов: галогенирование, сульфохлорирование. Селективность радикальных реакций и относительная стабильность алкильных радикалов. Термический и каталитический крекинг. Ионные реакции алканов в суперкислых средах (дейтероводородный обмен и галогенирование).
- 1.3. Циклоалканы. Методы синтеза и строение циклопропанов, циклобутанов, циклопентанов и циклогексанов. Синтез соединений со средним размером цикла (ацилоиновая конденсация). Типы напряжения в циклоалканах и их подразделение на малые, средние и макроциклы. Конформационный анализ циклогексана, моно- и дизамещенных циклогексанов; аксиальные и экваториальные связи. Влияние конформационного положения функциональных групп на их реакционную способность в ряду производных циклогексана на примере реакций замещения, отщепления и окисления. Реакции расширения и сужения циклов при дезаминировании первичных аминов (Демьянов). Сужение цикла в реакции Фаворского (а -галогенциклоалканоны).

2. Алкены

2.1. Методы синтеза: элиминирование галогеноводородов из алкилгалогенидов, воды из спиртов. Синтез алкенов из четвертичных аммониевых солей (Гофман), N-окисей третичных (Коуп). Стереоселективное восстановление аминов алкинов. Стереоселективный синтез цис- и транс-алкенов из 1,2-диолов (Кори, Уинтер). Региоселективный синтез алкенов из тозилгидразонов (Шапиро). Реакция Виттига как региоспецифический метод синтеза алкенов. Основания, используемые в реакции. Стабилизированные И нестабилизированные илиды. Стереохимия Хемоселективность реакции Виттига. Получение эфиров алкилфосфоновых кислот (Михаэль—Арбузов) и их использование в синтезе алкенов (вариант Виттига—Хорнера— Эммонса). Область применения реакции.

2.2. Реакции алкенов: электрофильное присоединение галогенов, галогеноводородов, воды. Процессы, сопутствующие AdE-реакциям: сопряженное присоединение, гидридные и алкильные миграции. Гидрокси- и алкоксимеркурирование. Регио- и стереоселективное присоединение гидридов бора. Региоспецифические гидроборирующие Превращение борорганических соединений в алканы, спирты, алкилгалогениды. оксиранов (Прилежаев). Понятие об Окисление алкенов до энантиомерном эпоксидировании алкенов по Шарплесу (в присутствии изопропилата титана и эфира L-(+)-винной кислоты). Цис-гидроксилирование алкенов по Вагнеру (КМпО4) и Криге (OsO4). Окисление алкенов галогеном в присутствии солей серебра: цис-(Вудворт) и транс-(Прево) гидроксилирование. Радикальные реакции алкенов: присоединение бромистого водорода по Харашу, сероводорода и тиолов. Аллильное галогенирование по Циглеру. Внутримолекулярная радикальная циклизация 6-галогеналканов при действии трибутилоловогидрида. Гетерогенное гидрирование: катализаторы, каталитические яды. Гидрогенолиз связей углерод-гетероатом. Гомогенное гидрирование: катализаторы, механизм. Региоселективность гомогенного гидрирования. Присоединение синглетных и триплетных карбенов к алкенам. Карбеноиды, их взаимодействие с алкенами.

3 Алкины

- 3.1. Методы синтеза: отщепление галогеноводородов из дигалогенидов, реакция 1,2-дигидразонов с оксидом ртути (II) и тетраацетатом свинца. Усложнение углеродного скелета алкинов: реакции ацетиленидов натрия и меди, магнийорганических производных алкинов. Конденсация алкинов-1 с кетонами и альдегидами (Фаворский, Реппе).
- 3.2. Реакции алкинов. Галогенирование, гидрогалогенирование, гидратация (Кучеров). Ацетилен-алленовая изомеризация. Смещение тройной связи в терминальное положение. Окислительная конденсация терминальных алкинов в присутствии солей меди.

4. Алкадиены

- 4.1. Методы синтеза 1,3-диенов: дегидрирование алканов, синтез Фаворского—Реппе, кросс-сочетание на металлокомплексных катализаторах.
- 4.2. Реакции 1,3-диенов: галогенирование и гидрогалогенирование, 1,2- и 1,4-присоединение. Реакция Дильса—Альдера с алкенами и алкинами, ее типы: карбореакция, гетеро-реакция. Диены и диенофилы. о-хинодиметаны в качестве диенов. Катализ в реакции Дильса—Альдера. Стереохимия реакции. Региоселективность [4+2]-циклоприсоединения в случае несимметричных диенов и диенофилов. Ретро-реакция Дильса—Альдера. Применение силоксидиенов в синтезе алициклов и гетероциклов.

5. Спирты и простые эфиры

- 5.1. Методы синтеза одноатомных спиртов: из алкенов, карбонильных соединений, сложных эфиров и карбоновых кислот.
- 5.2. Реакции одноатомных спиртов: замещение гидроксильной группы в спиртах на галоген (под действием галогеноводородов, галогенидов фосфора и хлористого тионила). Реагенты регио- и стереоселективного замещения (комплексы трифенилфосфина с галогенами и четыреххлористым углеродом). Дегидратация спиртов. Окисление первичных и вторичных спиртов. Реагенты окисления на основе соединений хрома (VI), диоксида марганца и диметилсульфоксида (методы Моффета и Сверна).
- 5.3. Методы синтеза и реакции двухатомных спиртов. Окислительное расщепление 1,2-диолов (иодная кислота, тетраацетат свинца). Пинаколиновая перегруппировка.

- 5.4. Методы синтеза простых эфиров: реакция Вильямсона, алкоксимеркурирование спиртов.
- 5.5. Реакции простых эфиров: образование оксониевых солей, расщепление кислотами.
 - 5.6. Гидропероксиды. Краун-эфиры, их получение и применение в синтезе.
- 5.7. Оксираны. Способы получения. Раскрытие оксиранового цикла под действием электрофильных и нуклеофильных агентов.

6. Альдегиды и кетоны

- 6.1. Методы получения альдегидов и кетонов: из спиртов, производных карбоновых кислот, алкенов (озонолиз), алкинов (гидроборирование), на основе металлорганических соединений. Ацилирование и формилирование аренов.
- 6.2. Реакции альдегидов и кетонов: присоединение воды, спиртов, тиолов. 1,3-Дитианы и их использование в органическом синтезе. Обращение полярности С=Огруппы. Получение бисульфитных производных и циангидринов. Взаимодействие альдегидов и кетонов с илидами фосфора (Виттиг) и серы. Взаимодействие альдегидов и кетонов с азотистыми основаниями. Перегруппировка Бекмана. Взаимодействие альдегидов и кетонов с металлорганическими соединениями. Енамины, их алкилирование и ацилирование. Альдольно-кротоновая конденсация альдегидов и кетонов как метод усложнения углеродного скелета. Направленная альдольная конденсация разноименных альдегидов с использованием литиевых и кремниевых эфиров енолов. Конденсация альдегидов и кетонов с малоновым эфиром и другими соединениями с активной метиленовой группой (Кневенагель). Аминометилирование альдегидов и кетонов Бензоиновая Конденсация (Манних). конденсация. c нитроалканами Восстановление альдегидов И кетонов до спиртов, реагенты восстановления. Дезоксигенирование альдегидов и кетонов: реакции Клемменсена и Кижнера—Вольфа. Окисление альдегидов, реагенты окисления. Окисление кетонов надкислотами по Байеру—Виллигеру.
- 6.3. α , β -Непредельные альдегиды и кетоны. Методы получения: конденсации, окисление аллиловых спиртов. Реакция 1,2- и 1,4-присоединения литийорганических соединений, триалкилборанов, диалкил- и диарилкупратов, цианистого водорода, галогеноводородов. Эпоксидирование α , β -непредельных кетонов. Сопряженное присоединение енолятов и енаминов к α , β -непредельным альдегидам и кетонам (Михаэль). Доноры и акцепторы Михаэля. Катализаторы реакции, ее обратимость. Ретрореакция. Реакции анелирования. Вариант Робинсона. Использование β -хлоркетонов и производных оснований Манниха. α -силилированные винилкетоны (Сторк) и енамины в реакциях анелирования.

7. Карбоновые кислоты и их производные

- 7.1. Методы синтеза кислот: окисление первичных спиртов и альдегидов, алкенов, алкинов, алкилов, гидролиз нитрилов и других производных карбоновых кислот, синтез на основе металлорганических соединений, синтезы на основе малонового эфира.
- 7.2. Реакции карбоновых кислот: галогенирование по Гелю-Фольгардту-Зелинскому, пиролитическая кетонизация, электролиз по Кольбе, декарбоксилирование по Хунсдиккеру.
- 7.3. Методы получения производных карбоновых кислот: галогенангидридов, ангидридов, сложных эфиров, нитрилов, амидов. Кетены, их получение и свойства.

- 7.4. Реакции производных карбоновых кислот: взаимодействие с нуклеофильными реагентами (вода, спирты, аммиак, амины, металлорганические соединения). Восстановление галогенангидридов до альдегидов по Розенмунду и комплексными гидридами металлов. Взаимодействие галогенангидридов с диазометаном (реакция Арндта-Эйстерта). Восстановление сложных эфиров до спиртов и альдегидов, нитрилов до аминов и альдегидов комплексными гидридами металлов. Малоновая кислота: синтезы с малоновым эфиром, реакция Михаэля, конденсации с альдегидами (Кневенагель). Сложноэфирная и ацилоиновая конденсации. Особенности эфиров двухосновных кислот (образование карбоциклов) в этих реакциях. Сложные эфиры а -галогенокислот в реакциях Реформатского. Ацетоуксусный эфир и его использование в синтезе.
- 7.5. Методы синтеза α,β -непредельных карбоновых кислот: дегидратация гидроксикислот, реакции Кневенагеля, Виттига, Перкина (синтез коричных кислот). Реакции присоединения по двойной связи. Бромо- и иодо-лактонизация α,β -непредельных карбоновых кислот.

8. Синтетическое использование реакций электрофильного замещения в ароматическом ряду

Классификация реакций ароматического электрофильного замещения. Влияние заместителей в бензольном кольце на скорость и направление электрофильного замещения. Согласованная и несогласованная ориентация.

- 8.1. Нитрование. Нитрующие агенты. Механизм реакции нитрования. Нитрование бензола и его замещенных. Нитрование бифенила, нафталина, ароматических аминов и фенола. Получение полинитросоединений. Ипсо-атака и ипсо-замещение в реакциях нитрования. Восстановление нитро-группы в различных условиях.
- 8.2. Галогенирование. Галогенирующие агенты. Механизм галогенирования аренов и их производных.
- 8.3. Сульфирование. Сульфирующие агенты. Кинетический и термодинамический контроль реакции (сульфирование фенола и нафталина). Превращение сульфогруппы.
- 8.4. Алкилирование аренов по Фриделю-Крафтсу. Алкилирующие агенты. Механизм реакции. Полиалкилирование. Побочные процессы: изомеризация алкилирующего агента и конечных продуктов. Синтез диарил- и триарилметанов.
- 8.5. Ацилирование аренов. Ацилирующие агенты. Механизм реакции. Региоселективность ацилирования. Особенности ацилирования фенолов, перегруппировка Фриса. Формилирование по Гаттерману-Коху, Гаттерману и Вильсмейеру. Область применения этих реакций.

9. Нитросоединения и амины

- 9.1. Нитроалканы. Синтез из алкилгалогенидов. Кислотность и таутомерия нитроалканов. Конденсация с карбонильными соединениями (Анри). Восстановление в амины. Превращение вторичных нитроалканов в кетоны (Мак-Марри).
- 9.2. Методы получения аминов: алкилирование аммиака и аминов по Гофману, фталимида калия (Габриэль), восстановление азотсодержащих производных карбонильных соединений и карбоновых кислот, нитросоединений, алкилазидов. Перегруппировки Гофмана и Курциуса. Синтез аминов с третичным алкильным радикалом (Риттер), взаимодействие альдегидов и кетонов с формиатом аммония (Лейкарт).
- 9.3. Реакции аминов. Алкилирование и ацилирование. Термическое разложение гидроксидов тетраалкиламмония по Гофману. Окисление третичных аминов до Nоксидов, их термолиз (Коуп). Получение нитронов из N,N-диалкилгидроксиаминов.

Реакции [3+2]-циклоприсоединения нитронов (образование пятичленных азотистых гетероциклов).

- 10. Методы синтеза и реакции ароматических гетероциклических соединений
- 10.1. Пятичленные гетероциклы с одним гетероатомом. Фуран, пиррол, тиофен. Синтез из 1,4-дикарбонильных соединений (Пааль—Кнорр). Синтез пирролов по Кнорру и по Ганчу. Синтез 3,4-дизамещенных тиофенов по Хинсбергу. Реакции электрофильного замещения в пятичленных ароматических гетероциклах: нитрование, сульфирование, галогенирование, формилирование, ацилирование. Индолл. Синтез производных индола из фенилгидразина и кетонов (Фишер). Синтез индола и его производных из 2-ациламинотолуолов (Маделунг). Реакции электрофильного замещения в пиррольном кольце индола: нитрование, формилирование, галогенирование.
- 10.2. Шестичленные ароматические гетероциклы с одним гетероатомом. Пиридин и хинолин. Синтез производных пиридина по Ганчу. Синтез частично гидрированных производных пиридина путем [4+2]-циклоприсоединения (гетеро-реакция Дильса—Альдера). Синтез хинолина и замещенных хинолинов из анилинов по Скраупу и Дебнеру—Миллеру. Реакции пиридина и хинолина с алкилгалогенидами. Окисление и восстановление пиридина и хинолина. Реакции электрофильного замещения в пиридине и хинолине: нитрование, сульфирование, галогенирование. N-окиси пиридина и хинолина и их использование в реакции нитрования. Нуклеофильное замещение атомов водорода в пиридине и хинолине в реакциях с амидом натрия (Чичибабин) и фениллитием. 2- и 4-метилпиридины и хинолины как метиленовые компоненты в конденсациях с альдегидами.

ДОПОЛНИТЕЛЬНАЯ ПРОГРАММА кандидатского экзамена по специальности 02.00.03 «Органическая химия»

«ХИМИЯ ФОСФОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ»

3.1. Закономерности строения и реакционного поведения фосфорорганических соединений

Атом фосфора, его ядро и электронная структура. Систематическая химия фосфора и его соединений. Гидриды, галогениды и псевдогалогениды фосфора и их органических производных. Соединения фосфора в качестве нуклеофильных реагентов. Бифильность соединений фосфора. Реакции с участием элементарного фосфора. Защищенные фосфорилирующие агенты. Образование фосфорилирующих агентов в реакционной смеси. Реакции, протекающие без непосредственного участия центрального атома фосфора. Нуклеофильная атака соединений с тетра- и пентаковалентным атомом фосфора (реакции нуклеофильного замещения).

- 3.2. Основные классы фосфорорганических соединений
- 3.2.1. Соединения одно- и двухкоординированного фосфора

Фосфинидены получение, синтез, физические и химические свойства фосфаалкинов.

3.2.2. Соединения трикординированного фосфора

Фосфины (классификация, номенклатура, получение, физические и химические свойства, основность и кислотность фосфинов) Перегруппировки в ряду фосфинов, практическое применение.

Фосфонистые кислоты, их производные (классификация, номенклатура, получение, физические и химические свойства, практическое применение)

Фосфинистые кислоты, их производные (классификация, номенклатура, получение, физические и химические свойства, практическое применение)

Производные фосфористой кислоты (классификация, номенклатура, получение, физические и химические свойства, перегруппировка Арбузова, практическое применение).

3.2.3. Соединения тетракординированного фосфора

Соли и основания четвертичного фосфония (классификация, номенклатура, получение, физические и химические свойства, практическое применение).

Фосфораны (классификация, номенклатура, получение, физические и химические свойства, практическое применение).

Алкилиденфосфораны и подобные им соединения (классификация, номенклатура, получение, физические и химические свойства, реакция Виттига, практическое применение).

Органические фосфиновые кислоты и их производные (классификация, номенклатура, получение, физические и химические свойства, практическое применение).

Органические фосфоновые кислоты и их производные (классификация, номенклатура, получение, физические и химические свойства, практическое применение).

Органические фосфорные кислоты и их производные (классификация, номенклатура, получение, физические и химические свойства, практическое применение).

3.2.4. Соединения пентакординированного фосфора

Пентаорганилфосфораны, пентаалкокси(арокси)фосфораны, квазифосфониевые соелинения.

3.2.5. Соединения шестикоординационного фосфора

3.2.6. Циклы, содержащие фосфор (классификация, номенклатура, получение, физические и химические свойства, практическое применение)

ЛИТЕРАТУРА

а) основная

- 1. Ингольд К. Теоретические основы органической химии. М.: Мир, 1973.
- 2. Марч Дж. Органическая химия, Т. 1-4. М.: Мир, 1987.
- 3. Реутов О.А., Курц А.Л., Бутин К.П. Органическая химия. Ч. 1-4. М.: Изд-во МГУ, 1999.
- 4. Кери Ф., Сандберг Р. Углубленный курс органической химии. Кн. 1, 2. М.: Химия, 1981.
- 5. Сайкс П. Механизмы реакций в органической химии. Вводный курс. М.: Химия, 2000.
 - 6. Джилкрист Т.Л. Химия гетероциклических соединений. М.: Мир, 1996.
- 7. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул. Ростов-на-Дону: Феникс, 1997.
 - 8. Потапов В.М. Стереохимия. М.: Химия, 1988.

- 9. Титце Л., Айхер Т. Препаративная органическая химия. Реакции и синтезы в практикуме органической химии и научно-исследовательской лаборатории. М.: Мир, 1999.
- 10. Органикум: Практикум по органической химии / Г. Беккер, В. Бергер и др. Т. 1, 2. М.: Мир, 1992.

б) дополнительная

- 1. Общая органическая химия: В 12 т. / Под ред. Д. Бартона и У.Д. Оллиса. Пер. с англ. / Под ред. М.К. Кочеткова и др. М. : Химия, 1983. Т.4. 727 с.; Т.5. 720 с.; Т.6. 544с.; Т.7. 472 с.
- 2. Д. Корбридж. Фосфор: Основы химии, биохимии, технологии: пер. с англ. М. : Мир, 1982.-680 с.
- 3. Кормачев В.В., Павлов Г.П. Химия элементоорганических соединений (V-VIII группы). Учеб. пособие. Чуваш. ун-т. Чебоксары, 1988. 88 с.
- 4. Нифантьев Э.Е. Химия фосфорорганических соединений. М.: Изд-во МГУ, 1971. 352 с.
- 5. Д. Пурдела, Р. Вылчану Химия органических соединений фосфора М. : Химия, 1972. 752 с.
- 6. Р. Хадсон. Структура и механизм фосфорорганических соединений М. : Мир, 1967.-364 с.
- 7. Нифантьев Э.Е. Химия гидрофосфорильных соединений. М.: Наука, 1983. 264 с.
 - 8. Кирби А., Уоррен С. Органическая химия фосфора. М.: Мир, 1971. 404 с.
- 9. Кормачев В.В., Федосеев М.С. Препаративная химия фосфора. Пермь: УрО РАН, 1992. 457 с.
- 10. Лабораторный практикум по химии фосфорорганических соединений / Сост. В.В. Кормачев, В.А. Кухтин. Чуваш. ун-т. Чебоксары, 1975. 231 с.
- 11. Химия фосфорорганических соединений / Сост. Ю.Н. Митрасов, В.В. Кормачев. Чуваш. ун-т. Чебоксары, 1980. 47 с.
 - 12. Олкок Г. Фосфоразотистые соединения. М.: Мир, 1976. 563 с.
- 13. Рахимов А. И. Синтез фосфорорганических соединений. Гомолитическая реакция М.: Наука, 1985. 248 с.
- 14. Левин Я. А., Воркунова Е. И. Гомолитическая химия фосфора. –М.: Наука, 1978. 320 с.
- 15. Ерастов О. А., Никонов Г. Н. Функционально замещенные фосфины и их производные. М.: Наука, 1986. 326 с.
 - 16. Джонсон А. Химия илидов. М.: Мир, 1969. 400 с.

Программа утверждена на заседании совета факультета естествознания и дизайна среды ФГБОУ ВПО ЧГПУ им. И.Я. Яковлева от 30.06.2012 г., протокол № 10.

Председатель совета ФЕ и ДС, профессор

В.В. Алексеев

A AMBAMHAL